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Abstract
Single-particle dynamics of the Anderson impurity model in the presence of
a magnetic field H are considered, using a recently developed local moment
approach that encompasses all energy scales, field and interaction strengths.
For strong coupling in particular, the Kondo scaling regime is recovered.
Here the frequency (ω/ωK) and field (H/ωK) dependence of the resultant
universal scaling spectrum is obtained in large part analytically, and the
field-induced destruction of the Kondo resonance investigated. The scaling
spectrum is found to exhibit the slow logarithmic tails recently shown to
dominate the zero-field scaling spectrum. At the opposite extreme of the Fermi
level, it gives asymptotically exact agreement with results for statics known
from the Bethe ansatz. Good agreement is also found with the frequency
and field-dependence of recent numerical renormalization group calculations.
Differential conductance experiments on quantum dots in the presence of a
magnetic field are likewise considered, and appear to be well accounted for by
the theory. Some new exact results for the problem are also established.

1. Introduction

The Anderson impurity model (AIM) [1] has long occupied a central role in condensed matter
theory. Reviewed comprehensively in [2], it serves as a paradigm for the physics of strong
local interactions, and remains the canonical model for understanding magnetic impurities in
metals; competition between on-site Coulomb repulsion and band hybridization generating the
Kondo effect in strong coupling, where the former dominates the latter. Renewed interest in
the problem has arisen recently from the discovery that direct mesoscopic realizations of AIMs
may be tailor made: quantum dots [3, 4] for example, or surface atoms probed by scanning
tunnelling microscopy [5]. Moreover, the intrinsic tunability of such nanoscale devices offers
controlled access to a wider range of quantum ‘impurity’ physics than usually accessible with
more traditional materials.
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Experimental probes of quantum dots are of course typically dynamical, and therein
lies a major theoretical challenge. Static (thermodynamic and related) properties of the
AIM are well understood using a variety of powerful techniques that include the numerical
renormalization group (NRG) [6], Fermi liquid theory [7] and the Bethe ansatz [8]. This is not,
however, the case for dynamical properties, such as the single-particle excitations. The many
theoretical approaches to such properties are approximate by necessity and suffer from well-
known qualitative limitations [2]—even for the AIM in equilibrium, let alone non-equilibrium
effects that, to a greater or lesser extent, are relevant to, for example, non-linear differential
conductance measurements [3, 4]. And the fact that numerical methods, notably the NRG,
can now provide benchmark numerical results for equilibrium dynamics (see e.g. [2]) gives
added impetus to further development of approximate many-body theories.

In this paper we consider the AIM in the presence of an applied magnetic field, H. This is a
topical issue [9–15], motivated in part by differential conductance measurements on quantum
dots in the Kondo regime [3, 4]: these show a characteristic field-induced splitting of the
Kondo resonance [9], indicative of the slow crossover from a locked Kondo singlet to an
asymptotically free local moment with increasing h = 1

2gµBH . We pursue it here within the
framework of the recently developed local moment approach (LMA) [16–19], a technically
straightforward non-perturbative many-body method in which the notion of local moments [1]
is introduced explicitly and self-consistently from the outset.

The LMA handles single-particle dynamics on all energy scales, and for all interaction
strengths Ũ =U/π	0 [16, 17] (with U the on-site Coulomb repulsion and	0 the hybridization
strength). Most importantly, in strong coupling Ũ � 1 it captures the Kondo or spin fluctuation
regime characterized by a low-energy Kondo scale ωK that is exponentially small, such that
zero-field single-particle dynamics exhibit universal scaling in terms of ω/ωK. The resultant
scaling spectrum for the symmetric AIM yields good quantitative agreement with NRG results
[18, 20], recovering not only Fermi liquid behaviour on the lowest energy scales but also
revealing slow logarithmic tails that in fact dominate the scaling spectrum [18].

For h �= 0, LMA results for static properties have recently been considered [19],notably for
the impurity magnetization and corresponding h-dependent spin susceptibility in the Kondo
regime. These too are found to yield good agreement with exact results known from the
Bethe ansatz [8, 21], being asymptotically exact in both the weak- and strong-field limits,
and correctly recovering the field-independence of the Wilson ratio, RW(h) = 2 for all h
[8, 22]. Here by contrast we consider field-dependent spectral dynamics, beginning (section 2)
with a brief introduction to the LMA for finite h, and focussing on the symmetric model, in
which the spectral effects of an applied field are most simply apparent. There are two essential
domains of field strength. First, the important strong coupling, universal Kondo limit, where
h by definition is irrelevantly small compared to the ‘bare’ electronic scales	0 or U, but with
h/ωK arbitrary, and spanning the entire range of field strengths relevant to the Kondo model.
It is this regime that is of primary interest in relation to experiments on quantum dots [3, 4].
There are also non-universal regimes of field strength, including a striking spectral signature
of the crossover to the high-field limit where the fermions become effectively spinless. These
are discussed as part of section 3, where evolution of the AIM spectra on all frequency and
field scales is considered, with the aim of extracting a broad overall picture of the problem.

In sections 4 and 5 we turn to the strong coupling Kondo limit, and spectral scaling in
terms of ω/ωK and h/ωK. As for the zero-field case considered recently [18], our initial aim
(section 4) is to obtain analytically the h-dependent scaling spectrum in a manner that is largely
independent of the details of the LMA, and in particular to deduce explicitly (section 4.1) the
behaviour of the high-frequency spectral tails, as well as the field-dependence of the spectrum
at the Fermi level. The main body of results for the LMA scaling spectra is given in section 5,
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including comparison to recent NRG [14] and density matrix NRG (DM-NRG) [15, 23]
calculations, as well as to the spinon approximation in which [11] the single-particle spectrum
is approximated by the density of states for spinon excitations obtained from the Bethe ansatz.
The LMA results of section 5.2 are found to compare favourably with the former, but are
markedly at odds with those of the spinon approximation. The latter is discussed explicitly in
section 5.3 and its qualitative limitations are identified.

Finally, comparison is made in section 5.4 to recent differential conductance experiments
[3] on quantum dots in a magnetic field, which, notwithstanding the natural absence of non-
equilibrium effects in the LMA, are found to be rather well described by the theory. A brief
summary is given (section 6), together with an appendix in which, using microscopic Fermi
liquid theory, we obtain two exact results for the problem that to our knowledge are new,
specifically for the field-dependence of the quasiparticle weight and the asymptotic low-field
behaviour of the spectral shifts.

2. Background

The Hamiltonian for the AIM [1] is given in conventional notation by

Ĥ =
∑
k,σ

εkn̂kσ +
∑
σ

(
εiσ +

U

2
n̂i−σ

)
n̂iσ +

∑
k,σ

Vik(c
†
iσ ckσ + hc). (2.1)

The first term refers to the host band of non-interacting electrons, with dispersion εk. The
second refers to the impurity, with on-site interaction U and site-energy εiσ = εi − σh. The
latter includes a local Zeeman coupling to the external field H (applied for convenience in
the −z-direction), with h = 1

2gµBH and σ = +/− for ↑/↓-spin electrons. The final term
in equation (2.1) is the one-electron host-impurity coupling. For the symmetric AIM that we
consider, εi = −U

2 , and by particle–hole (p–h) symmetry ni = ∑
σ 〈n̂iσ 〉 = 1 for all U and h.

We focus on the total impurity Green function G(ω; h) (with corresponding spectral
densityD(ω; h) = −π−1 sgn(ω) ImG(ω; h)), where

G(ω; h) = 1

2

∑
σ

Gσ (ω; h) (2.2)

with Gσ(ω; h) = GR
σ (ω; h)− i sgn(ω)πDσ (ω; h), given by

Gσ(ω, h) = [ω+ −	(ω) + σh− �̃σ (ω; h)]−1 (2.3)

and ω+ = ω + i0+ sgn(ω). Here 	(ω) = 	R(ω) − i sgn(ω)	I(ω) (= − 	(−ω)) is the
host-impurity hybridization, with 	I(ω) = π

∑
k V

2
ikδ(ω − εk); and the hybridization

strength 	0 = 	I(ω = 0) is thus defined, with ω = 0 the Fermi level. �̃σ (ω; h) =
�̃R
σ (ω; h)− i sgn(ω)�̃I

σ (ω; h) denotes the impurity self-energy (excluding the trivial Hartree
contribution that precisely cancels εi = − U

2 ). By p–h symmetry

�̃σ (ω; h) = −�̃−σ (−ω; h) (2.4)

and likewise Dσ (ω; h) = D−σ (−ω; h), whence D(ω; h) = 1
2

∑
σ Dσ (ω; h) = D(−ω; h) is

naturally symmetric in ω about the Fermi level. The h-dependent quasiparticle weight Z(h) is
defined by

Z(h) = [
1 − (

∂�̃R
σ (ω; h)/∂ω)

ω=0

]−1
(2.5)

(and from equation (2.4) is σ -independent).
In practice, we consider explicitly the usual wide-band AIM for which 	I(ω) = 	0 ∀ω

and	R(ω) = 0. This is not of course restrictive since in strong coupling, Ũ = U/π	0 � 1,
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Σσ = −σ σ −σ

σ

σ
i i

i i

Figure 1. Principal contribution to the LMA �σ (ω), see text. Wavy lines denote U.

the relevant low-energy Kondo resonance is a universal function of ω/ωK (with the Kondo
scale ωK defined as the HWHM of the h = 0 Kondo resonance). It is thus independent of the
detailed one-electron structure of	(ω)/	0, which affects only the dependence of ωK itself on
the bare one-electron parameters (such as the bandwidth, D, of	I(ω)). By the same token the
h-dependence of the Kondo resonance is independent of whether a local or global magnetic
field is considered. Application of a global uniform field leads additionally to an h-dependent
hybridization 	σ(ω; h) = 	(ω + σh); but its h-dependence arises on a one-electron energy
scale, and is thus irrelevant in the Kondo regime of finite h/ωK, ωK ∝ exp(−πU/8	0) → 0.

Within the LMA [16–19] the self-energy �̃σ (ω; h) is separated as

�̃σ (ω; h) = − σ
2U |µ(h)| + �σ (ω; h) (2.6)

into a static Fock contribution (with local moment |µ(h)|) that alone would survive at the simple
mean-field (MF) level of unrestricted Hartree–Fock, together with a dynamical contribution
�σ (ω; h). The latter includes, in particular, a non-perturbative class of diagrams (figure 1)
that embody dynamical coupling of single-particle excitations to low-energy transverse spin
fluctuations. Other classes of diagrams may also be included, but retention of the dynamical
spin-flip scattering processes is essential to capture the strong coupling Kondo regime for
Ũ � 1 [16, 17]. These are expressed in terms of MF propagators (solid lines in figure 1), viz.

Gσ (ω; h) = [
ω+ −	(ω) + σ

(
1
2U |µ(h)| + h

)]−1
(2.7)

with spectral densities D0
σ (ω) = −π−1 sgn(ω) ImGσ (ω; h), and �↑(ω; h) (= −�↓(−ω; h))

is given explicitly by [16]

�↑(ω; h) = U 2
∫ ∞

−∞

dω1

2π i
Im�+−(ω; h)

× [
θ(ω1)G−

↓ (ω1 + ω; h) + θ(−ω1)G+
↓(ω1 + ω; h)] (2.8)

with G±
σ (ω; h) the one-sided Hilbert transforms of Gσ (ω; h) and θ (x) the unit step function.

Here, �+−(ω; h) denotes the transverse spin polarization propagator (shown hatched in
figure 1). It is given at the simplest level by an RPA-like p–h ladder sum in the transverse
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spin channel, i.e. �+− = 0�+−/(1 − U 0�+−) with 0�+−(ω; h) the bare p–h bubble, itself
expressed in terms of MF propagators.

The central physical idea behind the LMA for h = 0 is that of symmetry restoration, as
detailed in [16, 17]: restoration of the broken symmetry endemic at pure MF level, via the
spin-flip dynamics embodied in�σ (ω; 0). The MF propagators form the basis for constructing
the dynamical self-energies�σ ≡ �σ [Gσ ] shown in figure 1, and by themselves correspond to
local symmetry breaking for |µ(0)| > 0. Symmetry restoration is embodied mathematically
in �̃R

↑ (0; 0) = �̃R
↓ (0; 0), i.e. using p–h symmetry by

�̃R
↑ (0; 0) = − 1

2U |µ(0)| +�R
↑ (0; 0) = 0. (2.9)

Equation (2.9) is imposed self-consistently, achieved in practice [16, 17] for given Ũ by
varying the local moment |µ(0)| from its pure MF value |µ0| (where µ0 = 〈n̂i↑ − n̂i↓〉0 with
the average over the MF ground state). Symmetry restoration ensures correctly that the low-ω
behaviour of G(ω; 0) constitutes a renormalization of the non-interacting limit, as manifest
[16] in a resultant quasiparticle form for G(ω; 0), the recovery of Fermi liquid behaviour at
low energies and preservation of the U-independent pinning of the Fermi level spectrum
(viz. π	0D(0; 0)= 1 ∀U � 0, as follows directly from equations (2.2) and (2.3) using
equation (2.9)).

Most importantly, self-consistent imposition of equation (2.9) introduces naturally a low-
energy spin-flip scale ω0

m = ωm(h = 0), evident in particular in a strong resonance centred
on ω = ω0

m in the transverse spin polarization propagator Im�+−(ω; 0). Its form in strong
coupling is readily deduced from equation (2.8) for ω = 0 = h, which for Ũ � 1 has the
asymptotic form [16]

�R
↑ (0; 0) = 4	0

π
ln

[
λ

ω0
m

]
(2.10)

with λ = min[U2 ,D]. Combining equation (2.10) with the symmetry restoration condition
(2.9) (using |µ(0)| → 1 in strong coupling) gives ω0

m ∼ λ exp(−πU/8	0). This is the
Kondo scale, exponentially small in strong coupling and recovering the exact exponent [2]. It
naturally has no counterpart at simple MF level, and within the LMA the physical significance
of the Kondo scale ω0

m (∝ωK) is that it sets the timescale (∼h̄/ω0
m) for restoration of the broken

symmetry inherent at pure MF level.
Before turning to h �= 0, note that for h = 0 two degenerate MF states arise [16],

reflecting simply the invariance of Ĥ under σ → −σ (↑/↓-spin symmetry). These states,
denoted temporarily by α = A or B, correspond respectively to a local moment of µ = ±|µ|.
The corresponding MF propagators are then denoted in full by Gασ (ω; 0), the self-energies
constructed from them by �̃ασ (ω; 0) and the resultant many-body Green functions by
Gασ(ω; 0); for example, equation (2.2) in full notation is G(ω; 0) = 1

2

∑
σ Gασ (ω; 0) with

Gασ(ω; 0) given from equation (2.3) in terms of �̃ασ (ω; 0). In writing equations (2.2)–(2.5)
we have assumed implicitly that either of the two mean-field states may be employed for h = 0.
This is indeed correct, for the Gασ(ω; 0)’s are related by ↑/↓-spin symmetry, viz.

GAσ (ω; 0) = GB−σ (ω; 0). (2.11)

Hence

G(ω; 0) = 1

2

∑
σ

Gασ (ω; 0) (2.12)



9718 D E Logan and N L Dickens

is independent ofα (which is not moreover specific to the symmetric AIM, since p–h symmetry
has not been used in any way). Using equation (2.11), G(ω; 0) may also be written equivalently
as

G(ω; 0) = 1

2

∑
α

Gασ (ω; 0). (2.13)

This form shows that G(ω; 0) may be viewed equivalently as involving an average over the two
degenerate MF states α = A, B. Equation (2.13) is moreover independent of spin, σ , reflecting
the fact that G(ω; 0) is equivalently the σ -spin Green function. Hence G(ω; 0) = [ω+ −	(ω) −
�(ω; 0)]−1 in terms of the conventional single self-energy �(ω; 0) which, using equation
(2.13), may therefore be obtained from the underlying two-self-energy description inherent to
the LMA as discussed in [16–18].

The above situation naturally changes for h �= 0. The degeneracy is removed and one or
other MF state is picked out, according to sgn(h). G(ω; h) is then given by

G(ω; h) = 1

2

∑
σ

Gασ (ω; h) (2.14)

with α = A for h > 0 and B for h < 0 (given our convention for the Zeeman coupling in the
Hamiltonian, equation (2.1)). But the invariance of Ĥ under (σ , h) → (−σ , −h) implies

GAσ (ω; |h|) = GB−σ (ω; −|h|) (2.15)

(and likewise for the �̃ασ (ω; h)), and thus G(ω; h) = G(ω; −h). Only h > 0 need therefore
be considered, and hence α = A; this will be assumed henceforth (and is already implicit in
equations (2.2)–(2.10), and the α label thus dropped. Finally, note that while G(ω; h) evolves
continuously in h to its h = 0 limit G(ω; 0), the fact that the degeneracy of the MF states is
removed for h �= 0 means that G(ω; h) for h �= 0 is naturally not expressible in the form of
equation (2.13).

3. Dynamics: all scales

We first consider single-particle dynamics on all frequency and field scales, i.e. encompassing
both the low-energy Kondo resonance and the high-energy Hubbard satellites, as well as the
full range of magnetic field strengths. The h-dependence of the low-energy scaling spectrum
that arises in the Kondo limit will be pursued in the following sections.

G(ω; h)is given by equation (2.2), and using equations (2.3), (2.6) and (2.7), Gσ(ω; h)
may be expressed as Gσ(ω; h) = [G−1

σ (ω; h)−�σ (ω; h)]−1
in terms of the dynamical part

of the self-energy, �σ(ω; h). The latter, given in practice by equation (2.8) and figure 1,
is quite generally a functional of the MF propagators Gσ (ω; h) given by equation (2.7):
�σ (ω; h) ≡ �σ [Gσ ]. HenceGσ(ω; h) ≡ Gσ [Gσ ], and from equation (2.7) it follows that the
h-dependence is embodied fully in x(h) = 1

2U |µ(h)| +h. The LMA G (ω; h) for h> 0 is thus
formally equivalent to that for h = 0,but with x(0) replaced by x(h) = x(0)+

[
1
2Uδ|µ(h)| +h

]
,

where δ|µ(h)| = |µ(h)| − |µ(0)|, and the zero-field moment |µ(0)| is determined such that
symmetry restoration (equation (2.9)) is satisfied.

In practice, we take δ|µ(h)| to be given approximately at MF level, specifically for the
wide-band AIM by

δ|µ(h)| � 2

π

{
tan−1

(
1
2U |µ(0)| + h

	0

)
− tan−1

(
1
2U |µ(0)|
	0

)}
. (3.1)
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The h-dependence of δ|µ(h)| is in fact of little importance,since it is never significant compared
to the bare Zeeman term (h) in x(h)− x(0) = 1

2Uδ|µ(h)| + h. In strong coupling (SC) Ũ =
U/π	0 � 1, this is seen directly from equation (3.1) which yields

U

2
δ|µ(h)| ∼

[
2

π

]2 1

Ũ

h

1 + h/[U/2]
(3.2)

(where we use |µ(0)| →1 in SC [16], reflecting saturation of the moment). However, in
weak coupling Ũ � 1 (where |µ(0)| = 0 [16]), 1

2Uδ|µ(h)|/	0 ∼ Ũ tan−1(h/	0) is likewise
insignificant compared to the Zeeman term h/	0, although its retention is readily shown to
be required to recover exactly the leading Ũ-dependence of the static impurity susceptibility
χ i (0) (LMA results for which have been considered in [19]).

LMA spectra for arbitrary h now follow straightforwardly. The zero-field x(0) = 1
2 U|µ(0)|

is first determined using the ω = 0 symmetry restoration condition, equation (2.9); and
x(h) for any h > 0 follows as above. �↑(ω; h) (= −�↓(−ω; h)) for all ω is given by

equation (2.8) with the MF propagators from equation (2.7). Gσ(ω; h) = [G−1
σ −�σ

]−1
,

G(ω; h) = 1
2

∑
σ Gσ (ω; h) and the single-particle spectrum D(ω; h) then follows directly.

Before proceeding we comment briefly on the h-dependence of the spin-flip scale ωm(h),
defined (as for h = 0 [16, 17]) as the position of the maximum in the transverse spin
polarization propagator Im�+−(ω; h); itself given (section 2) by the p–h ladder sum, with
the bare polarization bubble 0�+−(ω; h) expressed in terms of MF propagators. But since
ωm(h) ≡ ωm (x(h)) as above, the h-dependence of the spin-flip scale follows from a knowledge
of the x-dependence of 0�+− as considered in [16]. This may be deduced analytically in SC,
with the result

ωm(h) = ω0
m + 2|µ0|h. (3.3)

Here |µ0| is the MF local moment in zero-field, given explicitly from |µ0| = 2
π

tan−1
(
π
2 Ũ |µ0|

)
for the wide-band AIM [16]; and, in practice, equation (3.3) is numerically accurate for Ũ�3
or so. In the SC Kondo limit where |µ0| → 1, ωm(h) = ω0

m + 2h ∼ 2h for h/ω0
m � 1. This

is physically correct, it being known from solution of the Kondo/s–d model [8, 21] that for
fields large compared to the Kondo scale ωK ∼ ω0

m—and in practice for h/ωK� 1–10—the
impurity spin becomes asymptotically free (albeit with logarithmic corrections to the impurity
magnetization Mi(h) [8, 21]); and for a free spin- 1

2 the sole energy scale for spin flips is the
Zeeman splitting 2h = εi↑ − εi↓ characteristic of the atomic limit.

Single-particle spectra for h = 0 have been considered in references [16–18] to which
the reader is referred (and are shown as part of figures 2, 5, 7 below). While the LMA
is perturbatively exact to second order in U in weak coupling [16], our primary interest
is naturally in SC where the Kondo effect prevails. Figure 2(a) thus shows the zero-field
spectrum [16] (solid line)π	0D(ω; 0) versusω/	0 for Ũ = 6 (wide-band AIM). The following
spectral features should be noted. (i) The Kondo resonance is correctly pinned at the Fermi
level, π	0D(0; 0) = 1, as follows from self-consistent imposition of symmetry restoration
(equation (2.9)). By the same token its HWHM, the Kondo scale ωK, is exponentially small:
ωK ∝ ω0

m with ω0
m ∝ exp(−πU/8	0) in SC as explained in section 2. (ii) The maximum in

the Hubbard satellite(s) occurs at |ω| = U
2 in SC. It is Lorentzian in form, but its HWHM is

2	0 and not	0 as simple MF theory would predict, due to additional many-body broadening
processes [16, 24] (also see below).

3.1. Results: h > 0

There are three energy scales relevant to the h = 1
2gµBH dependence of single-particle

spectra, namely the Kondo scale ω0
m, the hybridization 	0 and the interaction U

2 , and such
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Figure 2. LMA spectra π	0D(ω; h) versus ω/	0 for Ũ = 6 as discussed in text. (a) Upper
panel: for h/ω0

m = 0 (solid line), 125 (long dash), 103 (short dash). (b) Lower panel: for h/ω0
m =

103 (solid line), 4 × 103 (dotted line), 1.2 × 104 (short dash), 1.6 × 104 (long dash). Inset:
corresponding π	0D↑(ω; h) versus ω/	0.

that ω0
m� 	0 � U in SC. There are thus several relevant domains of field strength. First

the all important Kondo limit corresponding formally to finite h/ω0
m and ω0

m →0. Here by
definition h is vanishingly small compared to 	0 or U, but h/ω0

m is arbitrary and spans the
entire range of field strengths appropriate to the Kondo model. This is the universal Kondo
scaling regime; we consider it in detail in section 4. Note however that this regime is simply
inaccessible to approximate theories in which the Kondo scale does not exist (e.g. equation of
motion approaches [9]) and to those that fail to recover an exponentially small Kondo scale in
SC, and hence the pristine separation between the Kondo scale and	0 or U that is the essence
of the Kondo regime (e.g. modified perturbation theory [10]). It is primarily this domain that
is of experimental interest in the context of quantum dots [3, 4].
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Figure 3. π	0 D(ω; h) versus ω̃ = ω/ωm(h) for fixed ωm(h)/ω0
m = 21 (i.e. h/ω0

m � 10), and
Ũ = 2 (dotted line), 4 (short dash) and 8 (long dash). The Kondo limit scaling spectrum obtained
in section 5.1 is also shown (solid line).

Figure 2 illustrates spectral evolution in the non-universal regimes of field strength. For
Ũ = 6, and in addition to h = 0, figure 2(a) shows the LMA π	0 D(ω; h) versus ω/	0 for
h/ω0

m = 125 (h/	0 ∼ 0.15 � 1) and h/ω0
m = 103 (h ∼ 	0); this is continued in figure 2(b)

for h/ω0
m = 103, 4 × 103 (	0 < h <

U
2 ), and h/ω0

m = 1.2 × 104 and 1.6 × 104 illustrating
h > U

2
Consider first the evolution of the ‘low’-energy spectral features. By h/ω0

m = 125 the
zero-field Kondo resonance has split, producing narrow peaks of much reduced intensity
centred upon |ω| � 2h i.e. the Zeeman splitting energy. The latter is also found by an equation
of motion approach [9], and seen in DM-NRG calculations by Hofstetter [15] for Ũ � 3 (see
figure 3 of [15] for D↑(ω; h), noting that the field therein corresponds to 2h in the present
notation and that 2h/	0 lies in the range 0.1–1). We add again however that frequencies of
order |ω| = 2h lie within the Kondo scaling ‘window’ only as 2h/	0 → 0, which is not the
case for the results shown in figure 2 or those of reference [15]. With further increasing field
the split peaks associated with the erstwhile Kondo resonance remain centred on |ω| � 2h,
but diminish further in intensity, ultimately losing their integrity and being subsumed into
the Hubbard satellites as h approaches the order U/2 characteristic of the zero-field satellites.
This is seen further from the LMA π	0D↑(ω; h) shown in the inset of figure 2(b); it is again
qualitatively consistent with the DM-NRG results of reference [15].

There are in fact two non-universal regimes of field strength, the crossover between which
occurs for h ∼ U

2 . This is apparent from the h-dependence of the Hubbard satellites. In SC the
latter (figure 2) are centred on |ω| = U

2 + h, as is obvious from the atomic limit of the model;
and the h-dependence of which thus becomes significant for h ∼ O (U2 ) (albeit that satellite
shifts are naturally perceptible in figure 2 for h ∼ O(	0)). The position of the Hubbard
satellites is however secondary: the h-dependence of their widths is the significant issue, as
now explained.

Upon addition of a ↓-spin electron to an ↑-spin occupied impurity, with energy cost
∼U

2 + h corresponding to the position of the upper Hubbard satellite, two subsequent hopping
processes may occur. The added ↓-spin may hop off the impurity, itself leading to an electron
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loss rate (and hence HWHM spectral broadening) of 	0. This is elastic scattering, and is all
that is captured at the one-electron MF level. Alternatively, the ↑-spin electron already present
may hop off the impurity, leading to a spin-flip with energy cost of order ωm(h), and hence to
an additional loss rate of 	0 provided ωm(h) � U

2 + h. This is a many-body process that has
no counterpart at MF level. The total loss rate of electrons from the site is thus 2	0, whence
the HWHM of the Hubbard satellites is doubled (and their peak intensity correspondingly
halved) compared to the simple MF result. This behaviour is clearly evident in figure 2 (where
π	0D(ω; h) � 1

4 at the peak positions of the Hubbard satellites); its formal origins within the
LMA for h = 0 have been discussed in reference [16].

For sufficiently large fields however, ωm(h) will become comparable to U
2 + h and

the spin-flip energy cost effectively prohibits the additional many-body broadening. Since
ωm(h) ∼ 2h for h � ω0

m, this arises for h ∼ U
2 . That the additional many-body broadening is

‘switched off’ for fields of this order is indeed seen in figure 2(b) for h/ω0
m = 1.2 × 104 and

1.6 × 104 (h/
[
U
2

] � 1.5 and 2 respectively); and D(ω; h) is given asymptotically by

D(ω; h) = 1

2

∑
σ

	0π
−1[

ω + σ
(
U
2 + h

)]2
+	0

2
(3.4)

such that π	0D(ω; h) � 1
2 for |ω| = U

2 + h.
Equation (3.4) is of course the pure MF spectrum in strong coupling, and that it is

asymptotically exact for h � U
2 may be seen from simple consideration of the h-dependent

one-electron site energies (see equation (2.1)), viz. εiσ = εi − σh with εi = −U
2 for the

symmetric AIM. If εi↓ � 0 and εi↑ � 0 (with 0 the Fermi level)— i.e. if h � |εi | = U
2 —

then in the ground state the impurity is occupied only by ↑-spin electrons. As far asD↑(ω; h) is
concerned only ↑ -spin electrons are then involved in virtual hopping processes; so the fermions
are effectively spinless, leaving an effective one-body problem with corresponding site energy
εi − h.D↑(ω; h) is then a Lorentzian of width 	0 centred on ω = εeff

i

(= − [
U
2 + h

])
, and

D↓(ω; h) follows from p–h symmetry. Equation (3.4) results for D(ω; h). It is the spectral
signature of the free-orbital regime where the static impurity susceptibility χ i(h) coincides
with that of the U = 0 limit (as is captured by the LMA, see [19]). The crossover to such
behaviour should be observable in NRG calculations of D(ω; h), for although NRG cannot
handle adequately the many-body broadening of the Hubbard satellites for h � U

2 , one-
electron broadening arising from the hybridization 	(ω) is well captured by a technique
introduced recently by Bulla et al [25].

3.2. Approach to the Kondo scaling limit

In strong coupling Ũ � 1, the low-energy physics of the AIM depends solely upon the Kondo
scale. The latter itself appears in a variety of superficially different guises, viz.ω0

m, ωK or
	0 Z(0) (with Z(0) the zero-field quasiparticle weight, see equation (2.5)). But these are
all of course equivalent, being simply proportional to each other (e.g.	0 Z(0) = π

4ω
0
m and

ωK = 0.691ω0
m within the present LMA [18]); we denote any of them by ωα.

Although ωα itself depends upon the interaction strength (ωα ∝ exp(−πU/8	0)), the
fact that it is the sole low-energy scale in SC means that the Kondo/Abrikosov–Suhl resonance
exhibits universal scaling in terms of ω/ωα alone, with no explicit dependence on the bare
material parameters. That the LMA for h = 0 leads to such scaling behaviour with progressively
increasing Ũ has been shown in reference [16]; the resultant scaling spectrum in the Kondo
limit has also been obtained analytically in reference [18], and shown to give good agreement
with h = 0 NRG calculations [18, 20].
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Scaling behaviour should likewise arise for h �= 0, but with the scaling spectrum
π	0D(ω; h)≡F(ω/ωα; h/ωα) now dependent upon ω/ωα and h/ωα. That such behaviour
arises within the LMA upon progressively increasing Ũ is illustrated in figure 3. We consider a
fixed value of ωm(h)/ω

0
m = 21, corresponding from equation (3.3) to a fixed h

′ = h / ω0
m = 10

in the Kondo limit where |µ0| → 1 (and to h
′
within 10% of this value for Ũ�4−5). For three

different interaction strengths Ũ = 2, 4 and 8, the resultant π	0 D (ω; h) are shown versus
ω/ωm(h)

(∝ω/ω0
m

)
. They are indeed seen to approach asymptotically the Kondo scaling limit

(albeit somewhat more slowly than for h = 0 [16]). The latter is also shown in figure 3, and
will now be investigated in detail.

4. Scaling spectrum: general considerations

Our aim here is to obtain analytically the h-dependent LMA scaling spectrum appropriate to
the Kondo limit, and in particular to do so with only minimal assumptions about the form
of the transverse spin polarization propagator �+−(ω; h) that enters the dynamical part of
the self-energy (equation (2.8)). As for the zero-field problem considered in reference [18]
the latter will enable us to encompass, and go beyond, the particular case considered in the
previous section where�+−(ω; h) is given by the p–h ladder sum.

To obtain the scaling behaviour for the Kondo resonance, one considers finite ω/ω0
m and

finite h
′ = h/ω0

m in the limit ω0
m ∝ exp(−πU/8	0)→ 0; the latter projects out the non-

universal features that are not part of the scaling spectrum (such as the Hubbard satellites).
Hence, referring to equations (2.2) and (2.3), the ‘bare’ω = [

ω/ω0
m

]
ω0

m ≡ 0 may be neglected,
as too may the bare field h = h′ω0

m ≡ 0; and 	(ω) likewise reduces to 	(0) = −i sgn(ω)	0.
The scaling spectrum then follows from equations (2.2) and (2.3) as

π	0D(ω; h)

= 1

2

∑
σ

[
1 + 1

	0
�I
σ (ω; h)

]2

[
1
	0

(
�̃R
σ (0; h)+[�R

σ (ω; h)−�R
σ (0; h)])]2

+
[
1 + 1

	0
�I
σ (ω; h)

]2 (4.1)

(where �̃I
σ (ω; h) = �I

σ (ω; h) and �̃R
σ (ω; h)− �̃R

σ (0; h) = �R
σ (ω; h)−�R

σ (0; h) are trivially
used). Equation (4.1) is general, in the sense that provided the host is metallic it applies to
any one-electron hybridization	(ω).

As expected, the scaling behaviour of the spectrum is thus determined exclusively by that
of the self-energies. And the form of the latter is in turn closely related to the corresponding
zero-field problem considered in reference [18]. Specifically, the transverse spin polarization
propagator that enters the LMA �σ(ω; h) (equation (2.8)) has the following functional form
in SC:

1

π
Im�+−(ω; h) = A

ωm(h)
f(ω̃)θ(ω̃) (4.2)

with ∫ ∞

0

dω

π
Im�+−(ω; h) = 1 = A

∫ ∞

0
dy f(y) (4.3)

and ω̃ = ω/ωm(h). The essential point here is that Im�+−(ω; h) for h > 0 has the same
functional form as for h = 0 [18], scaling in terms of ω̃ = ω/ωm(h) in the same way as it does
in terms of ω/ω0

m for h = 0. Such behaviour is physically natural, since ωm(h) remains the
sole low-energy spin-flip scale for h �= 0, just as it is for h = 0 where ω0

m = ωm(h = 0). Three
further points should be noted here. First, equation (4.3) embodies physically the saturation
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of the local moment in SC (|µ| → 1); the constant A being h-independent and determined by
the resultant ‘normalization’. Second, by definition of ωm(h), the function f(ω̃) is peaked at
ω̃ = 1; and f(ω̃) ∼ ω̃ as ω̃→ 0. Finally, we add that the above behaviour is readily shown
to arise explicitly with �+−(ω; h) given by the p–h ladder sum, from which f(ω̃) is found to
have the form [16, 18]

f(ω̃) = ω̃

1 − 2αω̃ + ω̃2 . (4.4)

In the following however, the particular functional form of f(ω̃) will not be required; we shall
need it only in section 5.

Using equation (4.2), the scaling behaviour of�σ (ω; h) (equation (2.8)) follows in direct
parallel to the h = 0 case [18]. We thus quote only the relevant results from reference [18].
Specifically

	−1
0 �

I
↑(ω; h) = θ(−ω̃)4A

∫ |ω̃|

0
dy f(y) (4.5)

(and �I
↓(ω; h) = �I

↑(−ω; h)), which is required in equation (4.1) and scales solely in
terms of ω̃ = ω/ωm(h) with no explicit h- or Ũ -dependence. However, for �R

↑ (ω; h)
(= −�R

↓ (−ω; h)),

	−1
0 �

R
↑ (ω; h) = 4

π
ln

[
λ

ωm(h)

]
− 4

π
A

∫ ∞

0
dy f(y) ln |y + ω̃| (4.6)

where (see section 2) λ = min
[
D, U2

]
. From this the quasiparticle weight, given generally by

equation (2.5) and reducing to Z(h)−1 = −(∂�R
σ (ω; h)/∂ω)

ω=0 in the SC scaling regime, is
thus given by

1

	0Z(h)
= 1

ωm(h)

4A

π

∫ ∞

0
dy
f(y)

y
(4.7)

and satisfies
Z(h)

Z(0)
= ωm(h)

ω0
m

(4.8)

(since A is h-independent). Equation (4.6) also yields directly

	−1
0

(
�R

↑ (ω; h)−�R
↑ (0; h)) = − 4

π
A

∫ ∞

0
dy f(y) ln

∣∣∣∣1 +
ω̃

y

∣∣∣∣ (4.9)

which is likewise required in equation (4.1) for π	0D(ω; h), and which again scales solely in
terms of ω̃.

The explicit U-dependence of the zero-field Kondo scale ω0
m ≡ ωm(h = 0) follows from

symmetry restoration equation (2.9), viz. �R
↑ (0; h) = 1

2U (since |µ(0)| →1 in SC). Equation
(4.6) for h = 0 then yields directly

ω0
m = cω′

m (4.10a)

with c a U- and h-independent constant of order unity given by

c = exp

[
−A

∫ ∞

0
dy f(y) ln(y)

]
(4.10b)

and

ω′
m = λ exp

[−πU
8	0

]
. (4.10c)

The remaining quantity required to determine equation (4.1) for π	0D(ω; h) is	−1
0 �̃

R
σ (0; h)

(equation (2.6)) which reduces in SC to �̃R
↑ (0; h) = −U

2 +�R
↑ (0; h) = �R

↑ (0; h)−�R
↑ (0; 0),
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again using |µ(0)| →1 together with δ|µ(h)| = 0 (as follows from equation (3.2) since the
bare h = h′ω0

m ≡ 0). Since A is h-independent, equation (4.6) then yields 	−1
0 �̃

R
↑ (0; h) =

− 4
π

ln
(
ωm(h)/ω

0
m

)
; i.e. using equation (4.8),

	−1
0 �̃

R
↑ (0; h) = − 4

π
ln

[
Z(h)

Z(0)

]
(4.11)

(with �̃R
↓ (0; h) = −�̃R

↑ (0; h)).
Our final task is to determine the explicit field-dependence of Z(h)/Z(0). This may

be deduced in two distinct ways. First, and more generally, using an exact Ward identity
pertaining to the Kondo regime of vanishing charge fluctuations [2]:

∂�̃R
↑ (0; h)
∂h

= −2

Z(h)
+ 1. (4.12)

Combined with equation (4.11), this leads to a trivial differential equation for Z(h); solution
of which yields the LMA result for Z(h)/Z(0), viz.

Z(h)

Z(0)
= 1 +

π

2

h

	0Z(0)
(4.13)

(remembering that we consider finite h/	0Z(0) and 	0Z(0) ∝ ω0
m → 0). Alternatively, the

h-dependence may be deduced directly from the LMA with�+−(ω; h) given explicitly by the
p–h ladder sum, which we refer to from now on as the LMA(RPA). In this case, as discussed
in section 3, the spin-flip scale ωm(h)/ω

0
m = 1 + 2h/ω0

m in SC. But for the LMA(RPA),
A f(y) = δ(y − 1) (see [18] and section 5 ), and thus 	0Z(0) = π

4ω
0
m from equation (4.7);

hence using equation (4.8), equation(4.13) for Z(h)/Z(0) is again recovered. Equation (4.13)
is of course approximate. An exact result for Z(h)/Z(0) can however be deduced using the
Ward identity equation (4.12), and comparison of which to equation (4.13) shows the latter to
be a good approximation over essentially the entire range of field strengths (figure 11).

For any finite field h/	0Z(0), the scaling behaviour of the single-particle spectrum
π	0D(ω; h) (equation (4.1)) may now be obtained directly using equations (4.5), (4.9), (4.11)
and (4.13) together with p–h symmetry. This will be considered explicitly in section 5 for a
particular form of the function f(ω̃) that determines (see equation (4.2)) the transverse spin
polarization propagator. However, first we consider predictions arising from the preceding
analysis that are essentially independent of the details of f(ω̃).

4.1. Spectral limits

Here we consider briefly the field-dependence of the single-particle spectrum at the Fermi level
ω = 0, as well as the behaviour of the spectral tails for frequencies |ω̃| = |ω|/ωm(h)� 1.

The Fermi level spectrum is given from equations (2.2) and (2.3) by π	0D(0; h) =[
1 +

([
h− σ�̃R

σ (0; h)] /	0
)2
]−1

(with σ�̃R
σ (0; h) independent of σ by p–h symmetry).

Defining h̃ = h/	0Z(0), the LMA result for π	0D(0; h) in the Kondo limit of finite h̃
and	0Z(0)→ 0 thus follows from equations (4.11) and (4.13) as

π	0D(0; h) =
[

1 +

(
4

π
ln
[
1 +

π

2
h̃
])2

]−1

(4.14)

with asymptotic field dependencies

π	0D(0; h) h̃�1
∼ 1 − 4h̃2 (4.15a)

π	0D(0; h) h̃�1
∼

[
4

π
ln(h̃)

]−2

. (4.15b)
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Figure 4. π	0D(ω = 0; h) versus h̃ = h/	0Z(0) obtained from the LMA (dashed line, equation
(4.14)), compared to the exact result from the Bethe ansatz [21] (solid line).

The exact behaviour of π	0D(0; h) can be obtained, since the (excess) impurity
magnetization Mi(h) follows generally from the Friedel sum rule as [2] πMi(h)/gµB =
tan−1

[(
h− σ�̃R

σ (0; h)) /	0
]
, whence

π	0D(0; h) = cos2

[
πMi(h)

gµB

]
(4.16)

with Mi(h) known from the Bethe ansatz (BA) solution of the Kondo/s–d model [21].
From this the exact low- and high-field asymptotics of π	0D(0; h) are readily obtained,
and are given by equations (4.15). The LMA thus captures these correctly, which is non-
trivial.

A full comparison between the LMA and exact BA results for π	0D(0; h) is given in
figure 4, and the level of agreement for all field strengths is self-evident. We also add that
numerical renormalization group calculations of the single-particle spectrum for the Kondo
model [14] yield excellent agreement with the BA result for π	0D(0; h) over the modest
range of field strengths considered in reference [14]. Static properties arising from the
LMA are discussed further in reference [19]. In particular, the Wilson ratio RW(h) = 2 ∀h
[8, 22] is correctly recovered, and the field-dependences of Mi(h) and the corresponding static
susceptibility χ i(h) are likewise found to be asymptotically exact in both the weak- and strong
field-limits.

The behaviour of the spectrum for frequencies |ω̃| = |ω|/ωm(h) � 1 is also
readily obtained. From equations (4.5) and (4.2), 	−1

0 �
I
↑(ω; h) is given asymptotically by

	−1
0 �

I
↑(ω; h) = 4θ(−ω̃). Equation (4.9) for |ω̃| � 1 yields 	−1

0

(
�R

↑ (ω; h) − �R
↑ (0; h)) =

− 4A
π

∫∞
0 dy f(y) ln[|ω̃|/y] = − 4

π
ln[|ω̃|c] where equation (4.3) is used and the constant c is

given by equation (4.10b); and 	−1
0 �̃

R
↑ (0; h) = − 4

π
ln
[
ωm(h)/ω

0
m

]
from equations (4.11)

and (4.8). Hence, �̃R
↑ (ω; h) = �̃R

↑ (0; h) +
[
�R

↑ (ω; h) − �R
↑ (0; h)] is given for |ω̃| � 1 by

	−1
0 �̃

R
↑ (ω; h) = − 4

π
ln(|ω|/ω′

m) where equation (4.10a) is used, and the Ũ -dependence of
ω′

m is given explicitly by equation (4.10c). The scaling spectrum for |ω̃| � 1 then follows
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from equation (4.1) as

π	0D(ω; h) |ω̃|�1
∼

1

2

{
1[

4
π

ln |ω′|]2 + 1
+

5[
4
π

ln |ω′|]2
+ 25

}
(4.17)

where ω′ = ω/ω′
m; equivalently, the frequency dependence may be recast in terms of ω/ωK

(with ωK the HWHM of D(ω; 0)) using ωK/ω
′
m = 0.691 found for the h = 0 LMA [18].

Equation (4.17) is precisely the result of the behaviour of the scaling spectrum ‘tails’
obtained in reference [18] for h = 0, and formally applicable there for |ω| � ω0

m = ωm(h = 0).
The resultant slowly varying tail is logarithmic in form, as opposed to the algebraic Doniach–
Šunjić [26] decay D(ω; 0) ∼ (|ω|/ωK)

− 1
2 hitherto thought to arise (see e.g. [20, 27, 28]).

We have however argued [18] that the logarithmic decay is entirely natural in physical terms,
and shown both that equation (4.17) gives excellent agreement with NRG calculations of
D(ω; 0) (see e.g. figure 2 of reference [18]), and that this long tail in fact dominates the
h = 0 scaling spectrum, the crossover to Fermi liquid form occurring only on the lowest
energy scales |ω|/ωK � 1. The arguments leading to equation (4.17) show additionally that
this tail behaviour is asymptotically common to both h = 0 and h > 0, where it arises for
|ω̃| = |ω|/ωm(h)� 1, i.e. for |ω|/ω0

m � 1 + π
2 h̃ (using equations (4.8) and (4.11)). This will

be seen explicitly in the results shown in the following section.

5. LMA scaling spectrum

To obtain the LMA scaling spectrum on all energy scales requires a full specification of
the transverse spin polarization propagator (equation (4.2). This is now considered, first
(section 5.1) using the LMA(RPA) with �+−(ω; h) given explicitly by the p–h ladder sum,
and then (section 5.2) via a simple modification thereof introduced previously in reference
[18]. In section 5.3 we consider the spinon approximation to the h-dependent single-particle
spectra developed in reference [11]. Comparison to recent transport experiments on quantum
dots in the Kondo regime [3] is made in section 5.4.

5.1. LMA(RPA)

For the LMA(RPA) the function f(ω̃) that determines Im�+−(ω; h) (equation (4.2)) has
the form equation (4.4), where the x-dependence of α (and A, see equation (4.3)) is given
explicitly in reference [16]. From this it is known [18] that in SC Ũ � 1, α→ 1
and A ∼ [2(1 − α)]

1
2 /π→ 0 such that Af(y) = δ(y − 1) i.e. from equation (4.2)

1
π

Im�+−(ω; h) = δ(ω − ωm(h)) reduces to a delta function centred on ωm(h) = ω0
m + 2h.

Note also that ω0
m = ω′

m follows from equations (4.10a) and (4.10b), with the Ũ -dependence
of ω′

m given explicitly by equation (4.10c).
From equations (4.5) and (4.9) it follows directly that

	−1
0

(
�R

↑ (ω; h)−�R
↑ (0; h)) = − 4

π
ln |ω̃ + 1| (5.1a)

	−1
0 �

I
↑(ω; h) = 4θ(−[ω̃ + 1]) (5.1b)

where ω̃ = ω/ωm(h), while 	−1
0 �̃

R
↑ (0; h) = − 4

π
ln
[
ωm(h)/ω

0
m

]
from equations (4.11) and

(4.8). The spectrum in closed form then follows simply from equation (4.1), specifically for
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Figure 5. LMA(RPA) scaling spectrum π	0D(ω;h) versus ω/ωK for h̃ = h/	0Z(0) =
0, 0.2, 0.5, 1, 2.5 and 5 (from top to bottom).

ω > 0 (since D(−ω; h) = D(ω; h)) by

π	0D(ω; h) = 1

2

{
1[

4
π

ln |ω′ + ω′
m(h)|

]2
+ 1

+
1 + 4θ(ω′ − ω′

m(h))[
4
π

ln |ω′ − ω′
m(h)|

]2
+
[
1 + 4θ(ω′ − ω′

m(h))
]2

}
. (5.2)

Here ω′ = ω/ω′
m, and likewise ω′

m(h) = ωm(h)/ω
′
m = 1 + 2h′ where h′ = h/ω′

m (≡h/ω0
m

as used in section 3); equivalently ω′
m(h) = 1 + π

2 h̃, where (as in, section 4) h̃ = h/	0Z(0)
and 	0Z(0) = π

4ω
′
m for the LMA(RPA). Equation (5.2) is the Kondo limit scaling spectrum

shown in figure 3 (for fixed ω′
m(h) = 21) and arising as the large-Ũ limit of the AIM. It

naturally reduces in the zero-field limit (where ω′
m(0) = 1) to the result obtained previously

in reference [18].
The field-dependence of the resultant spectrum is shown in figure 5: π	0D(ω; h) versus

ω/ωK for h̃ = h/	0Z(0) = 0, 0.2, 0.5, 1, 2.5 and 5; here as throughout, ωK is defined
as the HWHM of the zero-field spectrum (with ωK/ω

′
m = 0.691 for the LMA [18]). The

spectrum at the Fermi level, ω = 0, decreases monotonically with increasing field (figure 4);
and for sufficiently small fields (∂2D(ω; h)/∂ω2)ω=0 < 0, whence the maximum in the
Kondo resonance remains at ω = 0. As pointed out by Costi in a recent NRG study of
the Kondo model [14] however, the Kondo resonance ‘splits’ above a certain field Hc where the
ω = 0 curvature changes sign. For the LMA(RPA) this may be obtained analytically, and
occurs at 2hc/ωK = gµBHc/ωK = 0.600 compared to the corresponding NRG value [14] of
0.5.

With increasing h̃ > h̃c the split Kondo peaks in D(ω; h) move further apart, although as
seen (figure 5) the generic tail behaviour equation (4.17) is always approached at sufficiently
high frequencies. The LMA(RPA) peak splitting is readily deduced from the individual
Dσ (ω; h) (with π	0D↓(ω; h) given in its entirety by the second term in equation (5.2): since
ω′

m(h) = 1 + 2h′, it follows directly using equation (5.2) that Dσ (ω; h) = Dσ (ω + 2σh; 0)
withDσ(ω; 0) the zero-field case. Dσ (ω; h) thus amounts simply to a rigid shift of its zero-field
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counterpart, and hence has its peak maximum at ω′
p = −2σh′ precisely. The corresponding

maxima in D(ω; h) (= 1
2

∑
σ Dσ (ω; h) for h′ > h′

c likewise occur, in practice, very close to
|ωp| = 2h′ (figure 5) (and asymptotically so for h′ � 1), with a total peak splitting of 4h, or
twice the Zeeman energy. We add that a peak position of |ωp| = 2h in Dσ (ω; h) arises as the
large-field (h � ωK) asymptotic behaviour within the spinon approximation [11] (discussed
further in section 5.3). It also arises within an equation of motion approach [9], although the
apparent parallel here is somewhat misleading since the Kondo scale does not exist within
such an approach, and hence neither does the Kondo scaling regime of finite h/ωK and ω/ωK.

5.2. Beyond the LMA(RPA)

While the LMA(RPA) captures well the spectrum at the Fermi level (figure 4), and probably
also the spectral tails (as for h = 0 [18], see also figure 9), its quantitative limitations are
apparent from figure 5. The split Kondo peaks, for example, are too pronounced in comparison
to recent NRG calculations for the Kondo model [14]. The origins of this limitation stem
from the divergence in the LMA(RPA) �R

σ (ω; h) at |ω̃| = 1 (equation (5.1a)), reflected by
the ‘dip’ in π	0D(ω; h) at ω = ωm(h) evident in figure 5. As known for the h = 0 problem
[16, 18], this is entirely an artefact of the specific RPA-like form for the polarization propagator,
embodied in the fact that the resultant Im�+−(ω; h) is a δ-function at ω = ωm(h): in reality
one expects Im�+−(ω; h) to have a finite width.

To rectify this deficiency we proceed as in reference [18]. We retain the form (4.4)
for f(ω̃), which has a finite width provided α �= 1, and employ a high-frequency cut-off
ω̃c to render f(ω̃) normalizable (equation (4.3)). The width parameter α is then determined
by requiring that the leading low-frequency behaviour (∝ω2) of the imaginary part of the
conventional single self-energy for h = 0 is recovered exactly. As discussed in reference
[18] this requires A = 1

2 [ω0
m/	0Z(0)]2 (= 1

2 [ωm(h)/	0Z(h)]2, see equation (4.8)), which
via equations (4.3) and (4.7) in turn implies a simple equation that determines α uniquely for
the chosen cut-off ω̃c. The latter is of course arbitary but, as expected physically, results are
not sensitive to it [18]; in practice, as in reference [18], we choose ω̃c = 10 (and hence α =
0.308).

While the effects of this modification are rather minor in comparison to the LMA(RPA)
for h = 0 [18], they are more significant at finite fields. For h̃ = h/	0Z(0) = 1, figure 6
shows π	0D(ω; h) versus ω/ωK for the LMA(RPA) compared to the LMA outlined above
(and referred to simply as the LMA). The zero-frequency and asymptotic tail behaviours of
the two naturally coincide, being independent of the detailed form of f(ω̃) (see section 4.1).
But elsewhere the differences are clearly quite significant. In particular, the Kondo peaks in
the LMA are less pronounced, and for the example shown in figure 6 their splitting is smaller
in comparison to the LMA(RPA).

In figure 7 the h̃-dependence of the resultant LMA spectrum is shown (for the same fields
as in figure 5 for the LMA(RPA)). For h̃�1, the first effect of the field is to erode the zero-field
Kondo resonance ‘on the spot’—first diminishing and then splitting the resonance, but doing
so largely under the envelope of the zero-field spectrum itself. With further increasing field
however, and again in contrast to the LMA(RPA) (figure 5), the split Kondo peaks broaden and
diminish further in intensity; and their maxima move outside the zero-field spectral envelope,
although the tail behaviour of the resonance is asymptotically common for all fields (as shown
in section 4.1).

The LMA spectra shown in figure 7 agree rather well with those obtained from recent
NRG calculations [14] (see figure 3 therein). In particular, the spectral characteristics outlined
above are as found in the NRG calculations, and the qualitative similarity of figures 7 and 3
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Figure 6. For h̃ = 1, comparison between scaling spectraπ	0D(ω;h) arising from the LMA(RPA)
(dashed line) and the LMA (solid line) discussed in text.
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Figure 7. LMA π	0D(ω;h) versus ω/ωK for h̃ = h/	0Z(0) = 0, 0.2, 0.5, 1, 2.5 and 5 (from
top to bottom).

of reference [14] is self-evident. Detailed comparison may be made by noting that the LMA
spectra at ω = 0 for a given value of h̃ = h/	0Z(0) (given explicitly by equation (4.14)),
are in very good quantitative agreement with the ω = 0 NRG spectra at the same value of the
ratio H/TK employed in reference [14]. The resultant comparison as a function of frequency
is not of course quantitatively perfect; but it is certainly rather good, and the LMA is to our
knowledge the only theoretical approach that bears such comparison to the NRG data (see also
figure 9).

With increasing field the split Kondo resonance becomes increasingly broad/diffuse (see
figures 7 and 10), and we now comment on the large-h̃ dependence of the peak maxima in
the LMA D(ω; h) (or equivalently in the Dσ (ω; h)). This we find numerically to be of the
form |ωp| ∼ h ln h̃ for h̃ = h/	0Z(0)� 1. Hence |ωp| exceeds the value of 2h (the Zeeman
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splitting energy), generally regarded as the maximum spectral shift (see e.g. [11, 14]). For
the physical reasons outlined in section 3, it is, we believe, clear that the maximum shift in
the transverse spin polarization propagator—which directly probes spin-flip dynamics—will
not exceed an energy on the order of the free spin- 1

2 Zeeman splitting 2h. We do not however
know of a convincing reason, physical or otherwise, as to why this should also hold for
the single-particle spectrum in the Kondo scaling regime (note that the NRG calculations of
reference [14], which report |ωp| < 2h, are limited to comparatively small fields of H/TK�5
or so). This issue should however be resolvable by NRG calculations, possibly necessitating
use of the DM-NRG technique introduced recently by Hofstetter [15]. Indeed, we add that
preliminary calculations on the AIM in the strong coupling scaling regime, using the DM-NRG
method, confirm spectral shifts in excess of 2h for sufficiently large fields [23, 29], as seen
directly in figures 9 and 10.

In the opposite limit of h→ 0, an exact result for the spectral maximum ωp(h) =
−σ |ωp(h)| of the σ -spin spectrum Dσ (ω; h) may be obtained using Fermi liquid theory,
as discussed in the appendix. This leads to

|ωp| = RW(0)

1 + β	0Z(0)2
h (5.3)

where β = limh→0
[
limω→0

(
�̃I
σ (ω; h)/ω2

)]
. In the trivial non-interacting limit where

RW(0) = 1 (and β = 0), this recovers correctly |ωp(h)| = h (= 1
2gµBH ). In the strong

coupling Kondo limit by contrast, RW(0) = 2 and the exact β = 1/(2	0Z(0)2) [2]; hence

|ωp(h)| = 4
3 h. (5.4)

Equation (5.4), valid for h̃ � 1, is exact for the Kondo model (albeit somewhat
unexpected, conventional lore suggesting |ωp(h)| = 2h). It is not however recovered by
the LMA for Dσ (ω; h) which instead yields |ωp(h)| = h as h̃→0, reflecting the fact that
while RW(0) = 2 arises correctly within the LMA [19], the resultant β is readily shown
to be twice the exact value. Neither does equation (5.4) appear to be recovered by the
spinon approximation to the single-particle spectrum [11] (discussed further in section 5.3
below), the field-dependence of |ωp(h)|/2h being shown in figure 2 (top) of reference
[11]. For the lowest field considered there (gµBH/T0 ≡ 2h/ωK ∼ 1), |ωp(h)|/2h is
close to but slightly less than 2

3 , and appears to be diminishing further with decreasing
field (although its h→ 0 asymptote has not, to our knowledge, been determined). NRG
calculations of the Kondo model were originally reported [14] to yield |ωp(h)| � 2h
for h̃ � 1, but we understand that subsequent reanalysis of the low-field data [30] is
now consistent with the exact result equation (5.4).

Finally, recall from section 2 that for h = 0, D(ω; 0) given from equation (2.13) is
independent of spin σ , and is equivalently the zero-field σ -spin spectrum. That the present
LMA does not recover correctly the above low-field spectral shift ofDσ (ω; h), stems from the
fact that the individual LMA Dσ (ω; h) as h→ 0 do not separately coincide with D(ω; 0) for
arbitary ω (although the differences in general are rather minor, and Dσ (0; h) = D(0; h)
for all h and either σ ). This in turn is a natural consequence of the fact that (section
2), for any h �= 0, one or other MF state is picked out according to sgn(h): and as a
result the peak maxima in the individual Dσ (ω; h) for small h̃ are not captured correctly.
Note that the above remarks apply solely to the individual Dσ (ω; h), since D(ω; h) for
all ω evolves continuously in h to its h = 0 limit D(ω; 0) (see section 2). It is in fact
possible to recover the correct low-field shift in Dσ (ω; h) within an LMA framework; but
discussion of this would take us too far afield, and the present LMA does appear otherwise
to account rather well for the overall spectral behaviour of the individual Dσ (ω; h). These
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Figure 8. LMA π	0D↓(ω;h) versus ω/ωK for h̃ = 1 (short dash), 2.5 (long dash), 5 (point dash)
and π	0D(ω; 0) (solid line).
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Figure 9. π	0D↓(ω; h) versus ω/ωK for h/ωK = 25. Solid line: LMA. Dashed line: result from
DM-NRG calculations [23].

are illustrated in figure 8 for h̃ = 1, 2.5 and 5, and exhibit the same behaviour as the NRG
results shown in figure 2 of reference [14]. In addition, the LMA for π	0D↓(ω; h) is
compared explicitly in figure 9 with results arising from the DM-NRG approach [15] for a
field h/ωK = 25 (kindly provided by Hofstetter [23], and obtained for the AIM at a strong
coupling Ũ = 8). The LMA is seen to account well for the DM-NRG data. Note, in
particular, that both approaches clearly yield peak maxima |ωp| that are in excess of the
Zeeman splitting 2h, and that, on the low-frequency side in particular, the slow logarithmic
tails in π	0D↓(ω; h) (given by the first term on the right-hand side of equation (4.17)) are
clearly evident.
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Figure 10. Spinon approximation to the single-particle spectrum [11], ρ(ω; h)2h versus ω/2h
(dotted line), compared to the corresponding LMA result [4h/πωK]π	0D(ω;h) (solid line); for
a field h/ωK = 24. The experimental data of reference [3] is also shown (dashed line); see text
(section 5.3) for full discussion. Inset: LMA spectrum on an expanded frequency scale (solid line),
compared to [4h/πωK]π	0D(ω; h) versus ω/2h obtained via the DM-NRG method [15, 23] for
h/ωK = 25 (dashed line).

5.3. Spinon approximation

Here we compare the LMA results of the preceding section to the spinon approximation (SA)
[11], in which the h-dependent single-particle spectrum is approximated by the density of states
for spinon excitations obtained via the Bethe ansatz, and make further observations on the SA
itself, based upon the results presented in reference [11]. We denote the SA to the single-
particle spectrum by ρσ (ω; h) (in the notation of reference [11], with ρσ (ω; h) ∝ Dσ (ω; h).

To compare directly the LMA and SA we require the full proportionality, ρσ (ω; h) =
CDσ (ω; h) with C an ω- and h-independent constant. This is clearly given by C =
ρσ (0; 0)/Dσ(0; 0) = ρσ (0; 0)π	0 (using π	0Dσ(0; 0) = 1). It is however known [31]
that the zero-field spinon spectrum ρσ (ω; 0) is a pure Lorentzian, with an HWHM denoted
by T0 in reference [11] (such that T0 ≡ ωK in the notation of the present work). Hence
ρσ (0; 0) = 1/πT0 and C = 	0/T0. ρ(ω; h) = ∑

σ ρσ (ω; h) is thus related to D(ω; h)(= 1
2

∑
σ Dσ (ω; h)) by

ρ(ω; h)2h = 4
π
h
ωK
π	0D(ω; h). (5.5)

In figure 1 (bottom) of reference [11], and for a field 2h/T0 = 48 (≡2h/ωK), ρ(ω; h)2h
versusω/2h is shown in the interval |ω|/2h < 1 (to which frequency range the SA is restricted
in practice [11]). In figure 10 this SA result is compared to that arising from the LMA (via
equation (5.5)). The two clearly differ very significantly for all ω.

To gain some insight into the above, it is natural to consider the functional form of the
SA ρ↑(ω; h) (such that ρ(ω; h) = ρ↑(ω; h) + ρ↑(−ω; h) by p–h symmetry). In figure 1 (top)
of reference [11], ρ↑(ω; h)2h versus ω/2h is shown, again for h/T0 = 24. Although not
remarked upon in reference [11], ρ↑(ω; h) appears to be a Lorentzian, given by

ρ↑(ω; h) =
1
2	E(h)π

−1

[ω + Emax(h)]2 +
[

1
2	E(h)

]2 (5.6)
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where (using the notation of reference [11])Emax(h) and	E(h) denote respectively the peak
position and FWHM. The numerical validity of equation (5.6) may be confirmed by direct
transcription of the data given in figure 1 of reference [11] for h/T0 = 24; the Lorentzian form
(5.6) fits the data highly accurately (the correlation coefficient being 0.99995).

That ρσ (ω; h) should be a Lorentzian is not perhaps surprising, it being well known
[31] that the zero-field ρσ (ω; 0) is a pure Lorentzian; and although verified directly only for
h/T0 = 24, we naturally assume ρσ (ω; h) to be a Lorenztian for general h/T0. Granted this,
the SA to the ω = 0 single-particle spectrumD(0; h) (≡Dσ (0; h)) then follows directly from
equations (5.5) and (5.6) as

π	0D(0; h) � T0

2h

	E(h)/4h[
Emax(h)

2h

]2
+
[
	E(h)

4h

]2 (SA). (5.7)

The h-dependence ofD(0; h) is however known exactly (see equations (4.16) and (4.15)),
enabling the validity of the SA to be ascertained from the h-dependence of Emax(h) and
	E(h) given in reference [11]. Defining h0 = h/T0, their asymptotic behaviours are
known analytically for h0 � 1 in particular [11]: Emax(h)/2h ∼ 1 − O ([ln(h0)]

−1) and

	E(h)/2h ∼ O
([

ln2(h0)
]−1
)

. Hence from equation (5.7), the SA to π	0D(0; h) for large

fields h0 � 1 is π	0D(0; h) ∼ [
h0 ln2(h0)

]−1
. This is not however the exact asymptotic

behaviour, which from equation (4.15b) is in contrast given by π	0D(0; h) ∼ [
ln2(h0)

]−1

(using h0 ∝ h̃ = h/	0Z(0)). And this in turn underlies the disparity evident in figure 10
between the SA and LMA results forD(0; h) in particular (for fields of this order the LMA is
very close to the exactD(0; h), see e.g. figure 4).

The deficiencies of the SA are apparent even for h = 0, where the resultant Lorentzian
spectrum [31] is simplistic, failing to recover the logarithmic tails known to dominate the
single-particle scaling spectrum (see e.g. [18]). The approximation does not moreover appear
to improve forh �= 0, as evident from the discussion above. In this regard it is perhaps salient to

note that the large-field asymptotic behaviour ∼ [h0 ln2(h0)
]−1

deduced above for the ω = 0
spinon spectrum is in fact that of the exact excess impurity susceptibility χi(h) [21]. But
whatever its physical content, the SA does not in our view provide a qualitatively satisfactory
description of the single-particle spectrum.

5.4. Experiment

The differential conductance of a quantum dot in the presence of a magnetic field, Gc(V ; h)
with V the applied (drain-source) voltage, has recently been studied experimentally by
Goldhaber-Gordon et al [3]. Their data for an applied field H = 7.5 T have been compared
to the SA results [11], taking gµBH/ωK = 2h/ωK = 48 and |g| = 0.36 (as suggested by
ESR measurements on 2DEGs [32]). With this we likewise compare the experimental data [3]
to the LMA results of section 5.2. The two steps involved are as follows. First, considering
T = 0, we take (e2/2πh̄)−1Gc(V ; h) ∝ π	0D(ω = V ; h). This proportionality holds strictly
for the linear differential conductance (V = 0), non-equilibrium effects arising for V �= 0
thereby being neglected in practice (as also in e.g. reference [11]). Second, the proportionality
constant γ is determined simply fom the experimental linear differential conductance, viz.
γ = [

(e2/2πh̄)−1Gc(0; h)] /(π	0D(0; h)) with (e2/2πh̄)−1Gc(0; h) taken directly from the
data in reference [3] and D(0; h), the LMA spectrum at ω = 0.

The latter step requires an explanation, since the LMA spectrum is for T = 0 while the
experiment [3] is performed at T = 90 mK (approximately twice the Kondo temperature).
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The Kondo resonance is continuously destroyed by the separate effects of temperature
(as controlled by the ratio T/ωK) and an applied magnetic field (controlled by gµBH/ωK).
But if gµBH � T , the latter effect overwhelms the former, and comparison to the T = 0 limit
is thus warranted (the validity of which argument is in fact consistent with the NRG results of
reference [14], figure 3). This is indeed the relevant case in the experiment [3] at H = 7.5 T
and T = 90 mK, where (with |g| = 0.36 as above) gµBH/T ∼ 20.

The resultant comparison between the LMA and experiment [3] is shown in figure 10 as a
function of ω/2h (with [4h/πωK]π	0D(ω; h) shown to enable comparison to the SA results
[11] also given in the figure). The agreement with experiment is on the whole rather good,
particularly for |ω|�h where the ω (≡V ) dependence of the experimental Gc(V ; h) appears
to be quite well accounted for by the LMA. Insofar, as the modest differences between the
experiment and the LMA may be attributed to non-equilibrium effects, neither these nor
(as argued above) thermal effects would thus appear to dominate the experimental
observations. In this regard our interpretation of the experiment differs significantly from
that of reference [11], which is natural given the marked disparity (figure 10) between
experiment and the SA results [11]. The LMA is in turn in rather good agreement with
the results obtained from the DM-NRG approach [15, 23], particularly for |ω|�h. This is seen
from the inset to figure 10 where the above LMA results are compared to DM-NRG data for
2h/ωK = 50 (see also figure 9).

6. Summary

The subject of this paper has been single-particle dynamics of the symmetric Anderson
impurity model in the presence of a magnetic field. While topical, the problem certainly poses
a significant theoretical challenge. The non-crossing approximation [24, 33–35], for example,
which despite its inability to recover Fermi liquid behaviour at low energies has been used
to considerable effect for H = 0 (see e.g. [2]), fails quite dramatically for H �= 0, producing
spurious spectral peaks at the Fermi level [9] that are symptomatic [11] of its origins as a
large-N theory. Likewise equation of motion approaches [11] simply lack the low-energy
Kondo scale, modified perturbation theory [10] is confined to weak coupling and the spinon
approximation [11] suffers from the qualitative limitations discussed in section 5.3.

The local moment approach [16–19] developed here transcends many of the limitations of
previous theoretical approaches. All energy scales, field and interaction strengths are handled
by it, leading thereby to a rather comprehensive description of the problem that recovers in
particular the important strong coupling, Kondo scaling regime. Here, as for the zero-field
case [18], the LMA appears to pass the acid test of comparison to benchmark numerical
calculations provided by the NRG [14, 15, 23], as well as yielding rather good agreement with
experiments on quantum dots [3]. Its strengths stem in part from its inherent simplicity and
physical transparency, together with the fact that it is not confined e.g. to problems that are
ubiquitously Fermi liquid-like on low-energy scales [17, 20]. As such, we believe it provides
a powerful tool for further investigation of a wide spectrum of quantum impurity physics, and
related lattice-based models within the framework of dynamical MF theory [36, 37].
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Appendix

Using microscopic Fermi liquid theory, we obtain two exact results for the Kondo limit of the
AIM, specifically for the field-dependence of the quasiparticle weight (Z(h)/Z(0)) and the
asymptotic low-field behaviour of the spectral shifts (ωp) in Dσ (ω; h).

The basic underlying equations are as follows. The (excess) impurity magnetization
Mi(h) follows directly from the Friedel sum rule (see e.g. [2]), and for the symmetric AIM is
given generally by

Mi(h) = gµB

π
tan−1

[(
h− σ�̃R

σ (0; h)) /	0
]

(A.1)

(where σ�̃R
σ (0; h) is independent of spin, see equation (2.4)). From this the corresponding

impurity susceptibility follows, χi(h) = 1
2gµB(∂Mi/∂h). The Wilson ratio RW(h) =

cχi(h)/γi(h), with γi(h) the linear specific heat coefficient (c = [2πkB]2/[3(gµB)
2]); it

is given by

RW(h) = Z(h)
[
1 − σ (∂�̃R

σ (0; h)/∂h)] . (A.2)

And using (A.1) and (A.2), χi(h) may be expressed as

χi(h) = (gµB)
2

2
D(0; h)RW(h)

Z(h)
(A.3)

withD(0; h) ≡ Dσ (0; h) the spectrum at the Fermi level ω = 0. Finally, in the Kondo regime
of vanishing charge susceptibility, we will employ the Ward identity [2]

1 + σ

(
∂�̃R

σ (0; h)
∂h

)
= 2

(
∂�̃R

σ (ω; h)
∂ω

)
ω=0

(A.4)

(which is not specific to the symmetric model).
Consider first the Wilson ratio. Since Z(h) is given by equation (2.5), equations (A.2)

and (A.4) yield directly RW(h) = 2 ∀h. For h = 0, this result is well known since the
classic work of Nozières [7]. Its validity for all h was first suggested by Wiegmann and
Finkelstein [22] and later proven using the Bethe ansatz [8]. It is not of course specific to the
symmetric model: the generalization of A.2) for the asymmetric AIM is readily shown to be
RW(h) = ∑

σ Dσ (0; h) [1 − σ (∂�̃R
σ (0; h)/∂h)] /∑σ Dσ (0; h) [1 − (

∂�̃R
σ (ω; h)/∂ω)

ω=0

]
;

combined with (A.4), RW(h) = 2 ∀h again results.
We now consider Z(h)/Z(0). From (A.2), using RW(h) = 2,

Z(h)

Z(0)
= 1 − σ (∂�̃R

σ (0; h)/∂h)
h=0

1 − σ (∂�̃R
σ (0; h)/∂h) . (A.5)

With �̃R
σ (0; h) given from (A.1),

1 − σ (∂�̃R
σ (0; h)/∂h) = sec2

[
πMi(h)

gµB

]
2π	0

(gµB)2
χi(h) (A.6)

and hence

Z(h)

Z(0)
=

cos2
[
πMi(h)

gµB

]
χ̃i(h)

. (A.7)
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Figure 11. Exact field-dependence of the quasiparticle weight, [Z(h)/Z(0)]/
(
1 + π

2 h̃
)

versus
h̃ = h/	0Z(0) (solid line); the large-h̃ asymptote (equation (A.9)) is also shown (dashed line).

Here χ̃i(h)=χi(h)/χi(0), and from (A.3) using RW(0)= 2 and π	0D(0; 0)= 1, χi(0) =
(gµB)

2/(π	0Z(0))
(≡(gµB)

2/4kTLwhere kTL = π
4	0Z(0)

)
. Equation (A.7) is exact, and

Mi(h) (and hence χi(h)) is likewise known exactly from the BA solution of the Kondo model
[21]. The h̃ = h/	0Z(0) dependence of Z(h)/Z(0) may thus be found explicitly, and is
shown in figure 11 where [Z(h)/Z(0)]/

[
1 + π

2 h̃
]

is plotted; this being the ratio of the exact
Z(h)/Z(0) to that arising within the LMA (see equation (4.13)). The latter is thereby seen to
concur well with the exact result, deviation from which is typically �10% save for h̃ ∼ O(1)
where it is slightly more.

The large-h̃ behaviour of Z(h)/Z(0) bears note, it being known from the BA solution
that [21]

Mi(h)
h̃�1
∼
gµB

2

[
1 − 1

2 ln(bh̃)
− ln ln(bh̃)

4[ln(bh̃)]2
+ O

(
[ln♥〈]−�

)]
(A.8)

(where b = 4
√
e/π). The LMA for Mi(h) (discussed in [19]) recovers correctly the leading

logarithmic approach to saturation ([2 ln(h̃)]−1), but not the subleading ln ln(h̃)/[ln(h̃)]2

corrections. It is in fact the latter that generate the leading logarithmic corrections to
Z(h)/Z(0) ∼ π

2 h̃ for h̃� 1, which using (A.8) and (A.7) are given by

Z(h)

Z(0)
h̃�1
∼
π

2
h̃

[
1 +

1

2 ln(bh̃)

]
. (A.9)

The asymptotic behaviour (A.9) is also shown in figure 11 (dashed line).
Finally, we obtain an exact result for the asymptotic low-field behaviour of the spectral

shifts. Gσ(ω; h) itself is given by equation (2.3), with �̃σ (ω; h) the exact self-energy, and
we consider explicitly the wide-band AIM for which 	(ω) = −i sgn(ω)	0 (this does
not of course impose any restrictions on results for the Kondo regime). Dσ (ω; h) =
−π−1 sgn(ω) ImGσ(ω; h) follows from equation (2.3), and the spectral maximum therein
arises for ω = ωp(h) such that (∂Dσ (ω; h)/∂ω)ωp = 0, to which equation we seek the
asymptotic low-field solution with ωp ∝ −σh, say ωp = −γ σh. This is merely a
matter of algebra: one needs simply a standard low-frequency expansion of the self-energy,
�̃R
σ (ω; h) − �̃R

σ (0; h) ∼ −[Z(h)−1 − 1]ω and �̃I
σ (ω; h) ∼ β(h)ω2, and to recognize from
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(A.2) that limh→0
[
1 − σ

h
�̃R
σ (0; h)]Z(h) ≡ RW(0). With β ≡ β(h = 0), the general result

for the AIM is thereby found to be

|ωp| = RW(0)

1 + β	0Z(0)2
h (A.10)

as discussed in section 5.2.
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